

WFC3 Critical Design Review

CONFIGURATION OVERVIEW

Jim Sneary

Description Outline

- Location within HST
- System / Subsystems Layout
- Post SRR Changes

Continuing The HST Legacy Ultimate In-Service Replacement

3

"Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure."

December, 2000 WFC3 Critical Design Review

WFC3 Is A Hubble Space Telescope Radial Instrument

Numerous WF/PC 1 Components Are Being Reused On WFC3

Main (Detector)
Radiator

GSE Rotating Dolly

B-Latch

Guiderails

A-Latch

WF/PC1 H/W reuse items

Radiator Truss Assembly

Enclosure

C-Latch (hidden)

Mechanism Cover

GSE Pick-Off Mirror Cover

WFC3 Has Significant Subsystem Heritage

6

"Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure."

December, 2000 WFC3 Critical Design Review

Electrical Subsystem Simplified Block Diagram

Electronics Locations On WFC3

8

"Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure."

December, 2000 WFC3 Critical Design Review

Wide Field Optical Diagram

SHUTTER-

UVIS Channel

- FOV 160 X 160 arc sec
- F/31

• 4k X 4k CCD, 15 mm pixels

"Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure." December, 2000 WFC3 Critical Design Review

IR FILTER SELECT **MECHANISM**

Highlights Of Post-SRR Changes

- Reflective IR optical configuration changed to a refractive system
 - Incorporation of a refractive corrector plate (RCP) and an optimized 'co-located' cold stop
 - Benefit is overall instrument throughput improvement from 61 to 85 %
- Both detector focal planes (UVIS and IR) are mounted at an angle to optic axis to account for off-axis optical prescriptions
- Numerous packaging iterations for locations of mechanisms and electronics boxes.
- Down-selected to Marconi CCD for ;
 - Noise performance and considerations for coating / QE stability and CTE

UVIS Channel Detector

Format: 2 x 2Kx4K CCDs

Pixel size: 15 mm

Field of View: 160x160 arcsec

Bandpass: 200 to 1000 nm

Read Noise: < 4 e- rms

QE > 60% for 300 to 700 nm

Charge Transfer Efficiency:

> 0.99999 (start of life)

Dark current: < 15 e-/pix/hr

2k x 4k CCD

Two per assembly

Hardware from ACS Wide Field Camera

CEB Enclosure Electronics

Plane

Upper Radiation Shield

Base **Plate**

Filters

Cold Enclosure

IR Demo Hardware

- Designed, Fabricated And Tested -

12

•Format: 1Kx1K HgCdTe/Silicon mux

•Pixel size: 18 um

IR Detector Assy

•Field of View: 130x130 arcsec

Filter Wheel

Mechanism

•Bandpass: 850 to 1700 nm

One
1 K x 1 K FPA
per unit

Optical Assembly With Top Panel Removed

WFC3 Thermal Configuration

